• experimentation
    员工体验平台的演进:推动 AI 转型的关键引擎 Josh Bersin 公司发布新研究指出:员工体验平台(EXP)正在成为企业 AI 转型的关键基础设施。EXP 不再只是HR工具,而是推动组织学习、透明沟通和员工赋能的核心平台。研究提出五大战略:以人为本、自下而上、持续学习、透明沟通和实时优化。案例包括 Microsoft 的 HR AI 转型、ASOS 的 AI 自动化、Clifford Chance 的法律文书 AI 起草。EXP 赋能组织实现敏捷变革和AI落地。 AI 正在快速改变职场——不仅是技术,更是组织文化与工作方式的深刻变革。 人工智能(AI)的广泛应用为生产力、效率和业务增长带来了前所未有的机遇。然而,AI 转型并不仅仅意味着“部署新技术”,它实际上深刻地重塑了员工体验,影响着组织文化、团队协作方式与工作流程。 在这一转型过程中,员工体验平台(Employee Experience Platform,简称 EXP) 正逐渐从传统的 HR 工具,演进为推动企业成功实施 AI 的关键引擎。EXP 不再只是一个用于请假或查政策的门户,而是集成沟通、学习、协作、数据与自动化的智能化平台,帮助组织推动 AI 采纳、提升员工准备度,并确保 AI 真正带来业务价值。 员工体验平台的演进 EXP 的初始功能主要是处理事务性流程,如请假申请、薪资查询等。但如今,随着 AI 技术的发展,EXP 已演变为智能化的交互中心,集成以下核心功能: 跨系统的员工沟通与协作 提供关于 AI 使用和员工情绪的实时洞察 支持个性化的学习与技能建设 自动化重复任务,让员工专注于更有价值的工作 同时,得益于 AI Agent 的融入,如今的 EXP 变得更易使用,员工可通过自然语言与系统交互,实现跨系统流程操作,无需再进入多个事务性系统。 因此,EXP 不再是“可有可无”的系统,而是 企业 AI 成功转型的关键基础设施。 企业 AI 转型案例 我们调研了三家具有代表性的公司,探讨他们在 AI 转型中如何借助 EXP 实现落地与成效: 1. ASOS(线上时尚零售) 部署 Microsoft Copilot 与 Microsoft Viva 赋能多业务部门 用 AI 驱动 HR 案例处理工具,提升服务效率 通过自助服务门户精简事务流程 用自定义 AI bot 自动完成可持续认证流程 成果:员工生产力提升、参与度增强、AI 无缝落地 2. Microsoft(打造 AI 驱动的 HR 部门) 通过 Viva 学习模块开展 AI 培训 自助 HR 工具增强员工支持体验 实时分析 AI 使用情况,持续优化策略 成果:HR 效率显著提升,数千名 HR 领导参与 AI 社群 3. Clifford Chance(国际律所) 用 AI 起草法律文件,为律师提供初稿 借助 AI 语言工具跨越法律语境差异 利用 AI 管理法律知识,快速找出相关案例 成果:文书效率提升、知识共享加速、决策更精准 AI 转型的敏捷性要求 与传统变革不同,AI 推广不是一次性事件,而是一个 持续试验、迭代和适应的过程。因此,企业需具备“变革敏捷性”(Change Agility),用灵活的机制推动员工学习和组织协同。 借助 EXP 实现 AI 成功的五大战略 我们总结出五个成功企业在 AI 转型过程中普遍遵循的策略,而 EXP 是支撑这些策略实施的核心平台: 1. 以人为本与目标导向(Focus on People and Purpose) AI 的导入需与组织使命、价值观和员工需求保持一致。EXP 可确保所有 AI 工具围绕员工体验设计,提升参与度、工作效率和福祉。 ? 案例:Microsoft HR 借助 Viva Amplify 定制 AI 推广内容,让 HR 团队及时获取战略沟通信息,确保 AI 项目与业务目标保持一致。 2. 采用自下而上的迭代方法(Bottom-Up, Iterative Approach) AI 转型不能靠高层指令推动,而应依赖一线员工的反馈与试验。EXP 通过实时反馈与学习机制,让员工在实际工作中试用、迭代与优化 AI 工具。 ? 案例:ASOS 借助 Viva 社区功能发起“Work Smarter”活动,员工可在平台上公开交流 AI 使用案例,形成知识共享文化。 3. 鼓励透明沟通与试验精神(Transparent Communication and Experimentation) 员工需要明确知道 AI 工具的使用场景、目的与风险,才能建立信任并积极参与。EXP 提供结构化、公开的试验机制,确保过程透明。 ? 案例:Clifford Chance 在 Microsoft Viva 中嵌入 AI 工作流程,员工可以实时测试 AI 辅助起草功能,同时了解其运行逻辑。 4. 推动持续学习与技能建设(Continuous Learning and Skill-Building) 员工必须掌握 AI 基本素养,才能有效融入 AI 工具。EXP 提供基于角色定制的学习路径,支持技能升级与长期成长。 ? 案例:Clifford Chance 借助 Viva Learning 培训员工 prompt 工程、AI 素养与数据分析技能,为 AI 工具的使用打下基础。 5. 实现实时度量与持续优化(Real-Time Measurement and Improvement) 与传统 IT 项目不同,AI 推广必须持续监测并快速调整策略。EXP 提供实时分析能力,帮助企业追踪员工情绪、生产力与 AI 使用情况。 ? 案例:Microsoft HR 借助 Viva Insights 实时追踪 AI 使用频率、员工负荷减轻情况与情绪变化,以便动态调整 AI 战略。 HR 在 AI 转型中的新角色 在 AI 重构工作的过程中,HR 部门不再只是支持者,而是: 主导员工技能升级与再培训 协助重塑岗位定义与工作流程 在 HR、IT 与业务之间架起 AI 战略桥梁 落实负责任 AI 政策,确保 AI 应用符合伦理与企业文化 HR 将在未来的 AI 时代中扮演 “战略引导者 + 管理变革催化者” 的核心角色。 行动建议与未来展望 企业若想在 AI 转型中取得成功,应当: ✅ 采用“变革敏捷”思维,持续学习、实时迭代 ✅ 建立 AI 驱动的员工体验平台,支持流程与文化融合 ✅ 打破 HR、IT、业务之间的壁垒,实现跨部门协同 ✅ 实施实时度量机制,根据反馈不断优化 AI 战略 EXP 已成为企业迈入 AI 未来的基础设施。 AI 将持续重塑职场,但决定 AI 成败的关键并非技术本身,而是组织是否能让员工真正拥抱 AI、用好 AI。 EXP 不再只是一个 HR 工具,而是打造学习型组织、推动信任建设和灵活变革的“中枢神经系统”。企业若想在 AI 驱动的时代中保持竞争力,就必须把员工体验放在战略核心位置。 作者:Kathi Enderes | 全球研究与行业分析高级副总裁 | Josh Bersin Company
    experimentation
    2025年07月19日
  • experimentation
    前谷歌HR副总裁谈:AI不是“理解”人类,而是“预测人类”,Laszlo Bock谈职场的下一个十年挑战 在2025年5月的一场广受关注的主题演讲中,前Google人力资源主管、Humu创始人Laszlo Bock分享了他对“AI如何重塑未来工作形态”的深度洞察。这不仅是一场关于技术的讲座,更是一份面向HR群体的战略警告和实践指南。 他的核心论点可以归结为三点:AI并不真正“理解”语言,它只是预测下一句话最可能出现什么词;AI将迅速改变职场结构,尤其是初级岗位和事务性工作的消失;HR若不掌握数据能力和实验逻辑,将失去为员工发声和引导组织转型的机会。 人类直觉无法判断AI边界:它看世界是“token”,不是意义 Laszlo用一个看似简单但极具颠覆性的观点开场:AI不是在“思考”,而是在“预测”。 他指出,大型语言模型(LLMs)是通过将语言拆解成“token”(语言单位)进行训练的。这些模型并不具备语义理解能力,而是基于庞大的语料库,预测下一个最有可能的token。比如,当你问AI“生成一个1到100之间的随机数”,你可能经常得到“42”这个答案。这并不是因为42有任何数学意义,而是因为它在互联网上出现频率高——尤其是在大量关于《银河系漫游指南》的内容中。 这种基于“频率预测”而非“逻辑理解”的模式导致AI具备一种“锯齿状的能力边界”——即它在某些任务上表现卓越,但在看似相似的任务上却经常出错。例如,它可以写出流畅的商业邮件,但无法准确区分事实与虚构;它可以写诗,但很难遵守准确的格式要求;它可以下棋,却经常做出输局的决策。 正因为如此,我们人类在评估AI能否胜任某项任务时,往往会被自己的“直觉”误导。 AI提升了工作绩效平均值,但并不意味着每个人都会受益 Laszlo引用了BCG与哈佛商学院的联合研究,展示AI对员工绩效的实质影响。在这项研究中,团队设计了18种与真实工作情境接近的任务,从数据分析到创意思维,从说服性表达到战略建议。结果发现,当员工使用AI工具协助完成任务时,整体绩效水平显著提升,原本员工间28%的能力差距被缩小至5%。 这意味着,未来的职场中,“差距”会被压缩,“平均”成为常态。听起来似乎是件好事,但Laszlo却抛出一个值得HR深思的问题:如果每个人都变得“高效”,组织会如何反应?是减少工时?提高薪酬?还是干脆将“平均线”当作新标准,进一步压缩人力成本? 这并非杞人忧天。历史经验告诉我们,技术进步往往首先带来“效率红利”,但最终这些红利会在某些层级被资本所吸收,而不是自动回流到员工手中。 职场结构正在重构:五类岗位首当其冲 在对未来工作的预判中,Laszlo明确指出了五类岗位或将迅速减少,甚至消失。 首先是离岸外包型工作。随着AI在数据处理、文档生成等任务中的普及,企业将更倾向于直接部署AI模型,而非将工作转包给人力成本较低的国家。 其次是初级岗位,尤其是在咨询、银行、律师事务所等以“精英路径”著称的行业。大量初级岗位的主要任务是处理数据、制作PPT、整理分析报告,这些恰恰是AI擅长的内容。 第三类是事务性小时工,例如快餐店点单员、呼叫中心客服等。这些岗位过去被认为是“不可被机器取代”的人机交互工作,如今正被AI语音助手、聊天机器人、自动点餐系统等迅速替代。 第四,组织将逐渐发现一个更棘手的问题:中层管理人才短缺。Laszlo预测,未来4至7年内,具备协调能力、能带团队、能处理人际复杂问题的管理者将变得极为稀缺,因为AI可以替代事务执行,但无法承担信任建立、冲突调和、判断取舍等高度人性化的职责。 最后,是那些“以为安全”的专业性岗位,例如金融分析师、法律助理、初级产品经理等。如果其主要职责是信息归纳与逻辑输出,同样处于AI威胁之下。 HR需重新定位:别再做“感觉派”,而要成为“实验派” Laszlo在演讲中特别点名了HR行业的一个致命短板:很多政策和项目的设计并没有建立在实证基础之上,而是靠“经验”与“感觉”。 他列举了一些广泛存在的误区,例如: 提高员工内推奖金,并没有显著提升推荐量; 健康激励项目(如健身补贴)往往吸引的本来就是健康人; 看重名校背景的招聘标准,与员工实际绩效无关,甚至有时是负相关; 培训项目6个月后的绩效反而下降; 要求员工返岗的政策,降低了满意度,但并未提升生产力。 这些都说明,缺乏实验和数据支持的HR决策,可能带来反效果。 因此,他呼吁HR团队要向科学靠拢,掌握A/B测试、因果验证、数据解读等基本实验方法。特别是在部署AI相关工具和流程时,必须通过“高质量实验”来判断其真正影响,否则就只是被技术牵着走。 企业该如何准备?Laszlo提出六条实践路径 为了帮助企业和HR真正应对AI带来的变革,Laszlo提出了六条务实的建议。这些建议并不需要企业“砸钱买AI”,而是聚焦于“组织能力”的构建。 第一,清洗和集中数据。数据质量是AI成功的前提,脏乱差的数据只会导致错误的预测和决策。 第二,建立统计和实验能力。无论是HR项目还是AI工具的效果评估,都必须靠科学实验说话。 第三,设立“AI专责角色”。组织中应有一位专门负责AI探索的人,持续关注行业动态,并定期向管理层报告AI试点进展。 第四,选择业务最痛的地方,或个人最热情的领域作为AI试点起点。这样更容易获得支持与反馈。 第五,培养员工的学习能力,并将其作为招聘标准。因为我们无法预测未来五年最需要的技能,但可以培养出善于学习的员工。 第六,保持耐心。AI转型不是一蹴而就的。强生公司就用了三年时间,通过系统实验才明确AI的价值落点。 HR的第二次“高光时刻”已到来 Laszlo的结尾令人动容。他说,疫情期间,HR成为企业最重要的部门之一——引导组织远程办公、调整政策、守护员工心理健康。今天,随着AI浪潮席卷而来,HR再次站在战略变革的第一线。 而这一次,HR面临的不是临时危机,而是长期结构性重塑。一个真正成熟的HR团队,必须不仅能理解人,也要能理解技术;不仅能提出人本关怀,也能设计科学流程;不仅能代表员工发声,也能为组织盈利模式注入长期主义。 这既是一份挑战,更是一份召唤。 AI时代来临,每一个组织都必须重新思考“人”的价值。而HR,正是那个最应该引领答案的人。 Laszlo Bock的这场演讲,值得每一位HR反复阅读、深入讨论,并在组织内部真正落地。 如果你还没有准备好,不如从这六件事做起。 如果你已经在路上,欢迎把这篇文章分享给更多同行,一起构建一个更智慧也更有人性的未来职场。 备注: Laszlo Bock背景介绍: 前 Google 全球人力资源高级副总裁(SVP of People Operations),Humu 联合创始人,已退出管理岗位,AI 与组织变革思想领袖。 畅销书:《Work Rules!》(2015)
    experimentation
    2025年07月13日