• AI Platform
    Josh Bersin: When Will The Trillions Invested In AI Pay Off? Sooner Than You Think. 近年来,生成式人工智能(GenAI)的投资已达数万亿美元,但围绕其回报问题的争论不断升级。一些分析师,如麻省理工学院教授达隆·阿西莫格鲁(Daron Acemoglu)和纽约大学心理学与神经科学教授加里·马库斯(Gary Marcus),对AI的经济影响持悲观态度,认为其对美国生产力和GDP增长的推动作用有限,甚至可能导致市场崩溃。相反,另一派如高盛的全球经济学家则乐观地认为,AI有望在未来十年内大幅提高生产力。然而,文章指出,生成式AI的真正价值在于其特定领域的应用。例如,Paradox和Galileo等HR技术平台通过高度专业化的解决方案,显著提升了招聘和人才管理的效率。最终,文章强调,AI行业仍处于早期阶段,成功的关键在于找到具有专注性和精确性的创新解决方案。 In the last few weeks there has been a lot of concern that Gen AI is a “bubble” and companies may never see the return on the $Trillion being spent on infrastructure. Let me cite four analyst’s opinions. Will Today’s Massive AI Investments Pay Off? MIT professor Daron Acemoglu estimates that over the next ten years AI will impact less than 5% of all tasks, concluding that AI will only increase US productivity by .5% and GDP growth by .9% over the next decade. As he puts it, the impact of AI is not “a law of nature.” On a similar vein, Gary Marcus, professor emeritus of psychology and neural science at New York University, believes Gen AI is soon to collapse, and the trillions spent will largely result in a loss of privacy, increase in cyber terror, and a lack of differentiation between providers. The result: a market with low profits and big losses. Goldman Sachs Head of Equity Research Jim Covello is similarly pessimistic, arguing simply that the $1 Trillion spent on AI is focused on tech that cannot truly automate complex tasks, and that vendors’ over-focus on “human-like features” will miss the boat in delivering business productivity.  (He studies stocks, not the economy.) And Goldman Sachs Global Economist, who is a fan, estimates that AI could automate 25% of work tasks and raise US productivity by 9T and GDP by 6.1% over the next decade. He follows the traditional business meme that “AI changes everything” for the better. What’s going on? Quite simply this new technology is very expensive to build, so we’re all unsure where the payoffs will be. Buyers Are Looking For A Return Soon If we discount the work going on at Google, Meta, Perplexity, and Microsoft to build AI-based search businesses, which make money on advertising (Zuckerberg essentially just said that in a few years AI will guarantee your ad spend pays off), corporate IT managers are asking questions. An article in Business Insider pointed to a large Pharma company that cancelled their Microsoft Copilot licenses because the tool was not adding any significant value (Chevron’s CIO was quoted similarly in The Information). Another quoted a Chief Marketing Officer who stated Google Gemini’s email marketing tool and the new AI-powered ad-buying tool performed worse than the human workers it was intended to replace (or support). Given that these tools almost double the “price per user” for the productivity suites, I think it’s fair that CIOs, CMOs, to expect them to pay for themselves fairly quickly. What’s Going On?  The Big Wins Will Be Domain Specific As with all new technologies that enter the market quickly, “the blush on the rose” is over. We’ve been dazzled by the power of ChatGPT and now we’re searching for real solutions to problems. And unlike the internet, where research was funded by the government, there’s going to be a lag (and some risk) between the trillions we spend and the trillions we save. Given that ChatGPT is less than two years old and OpenAI has morphed from a research company into a product company, it’s easy to see what’s happening. Every vendor and tool provider is narrowing its AI “strategy” and not just pasting little AI “stars” on their websites, looking for useful things to do. And this process may take a few years. In the world of HR, I think we can all agree that a “push the button job description generator” is a bit of a commodity. However if the AI analyzes the job title, identifies the skills needed through a large skills engine, and tunes the job description by company size, industry, and role, then it’s a fantastic solution.  (Galileo does this, as does SeekOut, SAP, and some other vendors.) The more “specific” and “narrow” the AI is, the more useful it becomes. Generic LLMs that aren’t highly trained, optimized, and tuned to your company, business, and job are simply not going to command high prices. So while we all thought ChatGPT was Nirvana, we’re now figuring out that highly specialized solutions are the answer. Let me give you some examples. The first is the platform built by Paradox, a pioneering company that started work on AI-based recruiting agents in 2016. Paradox, now valued at around $2 Billion, delivers an end-to-end recruitment platform that automates the entire process of candidate marketing, candidate experience, assessment, selection, interview scheduling, hiring, and onboarding. Most people believe its a “Chatbot” but in reality it’s an AI-powered end-to-end system that radically simplifies and speeds the recruitment process in a groundbreaking way. Companies like 7-11, FedEx, GM, and others see massive improvements in operational efficiency and both candidates, managers, and recruiter adore it. It took Paradox eight years to build this level of integrated solution. The second is our platform Galileo. Galileo, which is now licensed by more than 10,000 HR professionals, is a highly tuned AI agent specifically designed to help HR professionals (leaders, business partners, consultants, recruiters, and other roles) do the “complex work” HR professionals do. It’s not a generic LLM: it’s a highly specialized solution designed specifically for HR professionals, and we’ve added specialized content partners and are building special integrations with other HR platforms. Our clients tell us it’s saving them 1-2 hours a day. The third is the platform HiredScore, that was recently acquired by Workday. Founded in 2012, the HiredScore team built tools to help identify “fit” between individuals and jobs, and tuned its AI to be highly explainable, unbiased, and very easy to use. It took Athena Karp and the team a few years to nail down the use-cases and user interface but now HiredScore is considered one of the most powerful recruitment “orchestration” tools in the market, and is also used for internal hiring and many other applications. Every customer I talk with tells me it’s essential and saves them months of manual, error-prone effort. The fourth is the platform Eightfold, which was invented in 2016 as a way to build “Google-scale” matching between job seekers and jobs. Through many years of engineering, product management, and ongoing sales process the company has become the leader in a new space called “Talent Intelligence,” now a billion dollar rapid-growing category. The company is about ten years old and now has some of the world’s largest companies building their hiring, career management, and talent management processes using AI. Companies like EY, Bayer, and Chevron now use it for all their strategic talent programs. Each of these vendors, including others like Gloat, Sana, Arist, Lightcast, Draup, Uplimit, Firstup, and hundreds of others have patiently taken the power of Generative AI and applied it with laser precision to their solutions. Each of these companies is different, and as we work with them we see lightning bolts of innovation: not in AI itself, but in finding new ways to solve problems and do what I call “crawling up the value curve.” This is the path for AI in the coming years. As with all new technologies, the “trough of disappointment” is always followed by the “bowling pin” of hitting the nail on the head. Innovators, entrepreneurs, and startup founders are the ones who will take GenAI and apply it in unique ways to solve problems. And soon enough, “AI-powered” will be a phrase we barely even need to say. The Best Solutions Will Be Narrow Not Wide GenAI solutions require a large “platform” of data, infrastructure, and software. That alone is not where the value resides. Rather, the big productivity advantages come after years of effort, focusing the data sets and working with customers to find the features, UI designs, and data sets that add enormous value. And we are still in the early stages. If you want to learn more about HR Technology and AI, join me at the HR Technology Conference on September 24-25 in Vegas, or at Unleash in Paris in October 16-17. While I can’t predict who will win the core AI platform game (Microsoft, OpenAI, Google, Meta, Amazon will fight it out), I can predicts this: Generative AI will deliver massive improvements in business productivity. You just have to shop around a bit and wait for just the right solutions to arrive.
    AI Platform
    2024年08月10日
  • AI Platform
    Josh Bersin:AI最终会连通整个企业界吗?问问ServiceNow,他们的回答是肯定的。 本周,ServiceNow在其年度用户大会上迎来了超过22,000名IT和技术专业人士,同时公布了几项对其战略的重大增强。ServiceNow的目标是通过一个全新的工作流软件层整合企业资源,使之能够实现全面连接,进而让员工、顾客以及企业领导通过一个统一的界面访问信息和系统。 历史上,ServiceNow主要通过一系列案例管理和服务交付工具来实现这一目标,这些工具主要服务于IT部门。这个平台极大地帮助IT服务团队自动化和优化了他们日常面临的各种IT请求和问题处理。但随着公司的发展及其野心的扩大,尤其是在Bill McDermott这位我所见过的最杰出领导者的带领下,ServiceNow的发展已经远远超出了原有范畴。 在员工服务领域,ServiceNow即将推出一系列雄心勃勃的产品。首先,原名为HR的员工工作流服务现已扩展到包括工作场所管理、员工入职、调查问卷以及技能分析工具等,还包括从Hitch收购的人才智能平台、内部职位调动与招聘等功能。公司正在开发专门的招聘工作流程,以帮助企业简化面试安排、候选人管理以及内外部候选人关系协调等复杂问题。这个看似小众的领域实际上正变得越来越重要,因为越来越多的公司开始重视内部职位流动和动态。 但在我本周参加这次会议时,我注意到ServiceNow的战略叙述发生了显著变化。Bill McDermott花了近一个小时重申他之前的讲话,但这次他将重点从工作流转移到了人工智能。他基本上将原本的工作流引擎战略替换为了“商业转型的AI平台”,显然,他们不再仅仅关注“数字化转型”。 ServiceNow的商业转型AI平台 他们强调的一个非常重要的信息是,AI将成为企业变革的技术,这与数字化变革的影响相似。 几个月前我们还在讨论数字化转型,现在,这已成为过去式:未来的变革将借助AI实现。没错,从某种意义上来说,每种技术都能成为业务变革的工具,但AI带来的变革程度将远超过互联网本身。这一点我稍后将进一步解释。 ServiceNow将其视为一个集成了异构系统的集合,中心是一个AI引擎。会议上的一个关键案例是一家面包店,因应不同地点的天气变化而调整各种烘焙产品的生产。中心的AI系统能够感知这些变化,预测接下来的行动,并指导工厂调整生产策略,从而满足市场需求,提升销售额。这是一个非常吸引人的案例。 ServiceNow的AI架构 有趣的是,像SAP在20世纪80年代推广集成供应链管理,Qualtrics推广客户体验管理时讲的故事,似乎都在用不同的方法解决相似的问题。Bill McDermott凭借丰富的经验,将这一叙事应用于ServiceNow,展现了他作为CEO的卓越远见和沟通能力。 那么,AI真的能成为未来的企业协调系统吗,将各种遗留平台联系起来,提供解决方案吗? 我确信这将成为现实。虽然这不会一夜之间实现,但最终会发生。这种变革同样适用于我们的消费者生活。 我们日常工作中的效率之所以低下,往往是因为在寻找信息、处理文档、查询库存等活动中分心。如果能直接通过AI查询并获取答案,无疑会极大提升工作效率。(正如我尝试让Siri帮忙却发现它做不到的那样。) 正如我在本周的播客中讨论的,通过语音或文本提出问题比在Workday、Oracle、SAP等系统中四处查找要简单得多。我们曾努力使这些系统更加用户友好,现在,生成式AI的出现将为这些努力带来新的变革。 ServiceNow之所以能够很好地定位自己,有两个主要原因。 首先,他们长期以来一直在开发工作流工具,很多系统都设计得非常用户友好,即便是普通用户也能轻松使用。这就是为什么有这么多IT开发者选择使用ServiceNow的原因。(我在这周的大会上亲眼见证了这一点。) 其次,他们对这些后端系统的工作原理非常熟悉。ServiceNow的工程和产品团队对SAP、Oracle、Workday等系统进行的工作流程和交易处理有深入了解。 我与HR产品团队有过深入的交流,他们向我展示了如何将员工交易集成到ServiceNow平台中,以便构建生成式AI解决方案,与公司内部的系统进行交互。这一过程需要时间,也不会十全十美,但他们已经在正确的道路上迈出了坚实的步伐。这也引出了一个问题:我们是否应该将所有企业系统整合到这种新的界面下。 ServiceNow的HR产品 然而,这种架构也有潜在的缺点。 首先,成本较高。你现在不仅要购买ServiceNow这一复杂的企业平台,还要维护你现有的复杂企业平台。Oracle、SAP、Workday、Salesforce和Hubspot等都在尝试提供类似服务。你已经为他们的建设付出了巨大的成本,现在又要为ServiceNow付费。ServiceNow的产品不便宜,这从他们的收入就可以看出。 其次,这可能会造成系统的脆弱性。ServiceNow的工作流本身可能会因为业务规则的嵌入而变得过时,你必须管理许多小型应用程序,这些应用程序位于你的其他应用程序之上。当这些应用程序更新或被替换时(很多软件公司被收购后,其产品线会发生变化),作为客户的你需要重新配置在ServiceNow中所做的设置。 这让我回想起我在IBM的日子,当时我在主机世界工作,我们的应用程序都是定制开发的,我们有大量的COBOL程序员在构建这些系统。我曾与数据处理部门合作,探讨他们是如何在公司内部整合所有这些系统的。现在,你可能需要在ServiceNow基础设施中构建类似的工具。 如果我现在能与Bill McDermott面对面交谈,我相信他会说:“这是一种更有效的运营方式,我们ServiceNow将为你自动化这一切。”我相信这将随着时间的推移逐渐成为现实。但这也引出了一个问题:你希望将多少组织功能和经验整合进ServiceNow,而不是选择其他核心系统? 每当我们需要构建新功能时,我们都必须决定将其部署在何处。我们是应该将职业管理平台部署在Workday、Eightfold、Degreed还是Cornerstone?你的决定将决定你依赖于哪个供应商及其发展路线图。 考虑到ServiceNow已经取得了巨大的成功,许多公司都在说:“既然我们已经为此付出了代价,那就让我们继续吧。” 生成式AI能否实现这一承诺?例如,在天气变暖时,它能否提前告诉你需要烘焙更多的面包圈? 根据我们通过Galileo®获得的AI经验,我认为答案是肯定的。 这项技术的重要性堪比电力的发明。虽然这听起来有些夸张,但我是认真的。我从未见过如此自我发展、强大并且发展迅速的技术。我们正处于生成式AI进入市场的初期阶段。 在未来几年内,生成式AI很可能会改善这些连接,开发代码,并优化这些端到端的“单一视窗系统”。Google正在消费者领域推进此类工作,Microsoft则在办公生产力领域努力。如果ServiceNow能成为企业级应用中的佼佼者,那将不足为奇。
    AI Platform
    2024年05月10日