员工体验平台的演进:推动 AI 转型的关键引擎Josh Bersin 公司发布新研究指出:员工体验平台(EXP)正在成为企业 AI 转型的关键基础设施。EXP 不再只是HR工具,而是推动组织学习、透明沟通和员工赋能的核心平台。研究提出五大战略:以人为本、自下而上、持续学习、透明沟通和实时优化。案例包括 Microsoft 的 HR AI 转型、ASOS 的 AI 自动化、Clifford Chance 的法律文书 AI 起草。EXP 赋能组织实现敏捷变革和AI落地。
AI 正在快速改变职场——不仅是技术,更是组织文化与工作方式的深刻变革。
人工智能(AI)的广泛应用为生产力、效率和业务增长带来了前所未有的机遇。然而,AI 转型并不仅仅意味着“部署新技术”,它实际上深刻地重塑了员工体验,影响着组织文化、团队协作方式与工作流程。
在这一转型过程中,员工体验平台(Employee Experience Platform,简称 EXP) 正逐渐从传统的 HR 工具,演进为推动企业成功实施 AI 的关键引擎。EXP 不再只是一个用于请假或查政策的门户,而是集成沟通、学习、协作、数据与自动化的智能化平台,帮助组织推动 AI 采纳、提升员工准备度,并确保 AI 真正带来业务价值。
员工体验平台的演进
EXP 的初始功能主要是处理事务性流程,如请假申请、薪资查询等。但如今,随着 AI 技术的发展,EXP 已演变为智能化的交互中心,集成以下核心功能:
跨系统的员工沟通与协作
提供关于 AI 使用和员工情绪的实时洞察
支持个性化的学习与技能建设
自动化重复任务,让员工专注于更有价值的工作
同时,得益于 AI Agent 的融入,如今的 EXP 变得更易使用,员工可通过自然语言与系统交互,实现跨系统流程操作,无需再进入多个事务性系统。
因此,EXP 不再是“可有可无”的系统,而是 企业 AI 成功转型的关键基础设施。
企业 AI 转型案例
我们调研了三家具有代表性的公司,探讨他们在 AI 转型中如何借助 EXP 实现落地与成效:
1. ASOS(线上时尚零售)
部署 Microsoft Copilot 与 Microsoft Viva 赋能多业务部门
用 AI 驱动 HR 案例处理工具,提升服务效率
通过自助服务门户精简事务流程
用自定义 AI bot 自动完成可持续认证流程
成果:员工生产力提升、参与度增强、AI 无缝落地
2. Microsoft(打造 AI 驱动的 HR 部门)
通过 Viva 学习模块开展 AI 培训
自助 HR 工具增强员工支持体验
实时分析 AI 使用情况,持续优化策略
成果:HR 效率显著提升,数千名 HR 领导参与 AI 社群
3. Clifford Chance(国际律所)
用 AI 起草法律文件,为律师提供初稿
借助 AI 语言工具跨越法律语境差异
利用 AI 管理法律知识,快速找出相关案例
成果:文书效率提升、知识共享加速、决策更精准
AI 转型的敏捷性要求
与传统变革不同,AI 推广不是一次性事件,而是一个 持续试验、迭代和适应的过程。因此,企业需具备“变革敏捷性”(Change Agility),用灵活的机制推动员工学习和组织协同。
借助 EXP 实现 AI 成功的五大战略
我们总结出五个成功企业在 AI 转型过程中普遍遵循的策略,而 EXP 是支撑这些策略实施的核心平台:
1. 以人为本与目标导向(Focus on People and Purpose)
AI 的导入需与组织使命、价值观和员工需求保持一致。EXP 可确保所有 AI 工具围绕员工体验设计,提升参与度、工作效率和福祉。
? 案例:Microsoft HR 借助 Viva Amplify 定制 AI 推广内容,让 HR 团队及时获取战略沟通信息,确保 AI 项目与业务目标保持一致。
2. 采用自下而上的迭代方法(Bottom-Up, Iterative Approach)
AI 转型不能靠高层指令推动,而应依赖一线员工的反馈与试验。EXP 通过实时反馈与学习机制,让员工在实际工作中试用、迭代与优化 AI 工具。
? 案例:ASOS 借助 Viva 社区功能发起“Work Smarter”活动,员工可在平台上公开交流 AI 使用案例,形成知识共享文化。
3. 鼓励透明沟通与试验精神(Transparent Communication and Experimentation)
员工需要明确知道 AI 工具的使用场景、目的与风险,才能建立信任并积极参与。EXP 提供结构化、公开的试验机制,确保过程透明。
? 案例:Clifford Chance 在 Microsoft Viva 中嵌入 AI 工作流程,员工可以实时测试 AI 辅助起草功能,同时了解其运行逻辑。
4. 推动持续学习与技能建设(Continuous Learning and Skill-Building)
员工必须掌握 AI 基本素养,才能有效融入 AI 工具。EXP 提供基于角色定制的学习路径,支持技能升级与长期成长。
? 案例:Clifford Chance 借助 Viva Learning 培训员工 prompt 工程、AI 素养与数据分析技能,为 AI 工具的使用打下基础。
5. 实现实时度量与持续优化(Real-Time Measurement and Improvement)
与传统 IT 项目不同,AI 推广必须持续监测并快速调整策略。EXP 提供实时分析能力,帮助企业追踪员工情绪、生产力与 AI 使用情况。
? 案例:Microsoft HR 借助 Viva Insights 实时追踪 AI 使用频率、员工负荷减轻情况与情绪变化,以便动态调整 AI 战略。
HR 在 AI 转型中的新角色
在 AI 重构工作的过程中,HR 部门不再只是支持者,而是:
主导员工技能升级与再培训
协助重塑岗位定义与工作流程
在 HR、IT 与业务之间架起 AI 战略桥梁
落实负责任 AI 政策,确保 AI 应用符合伦理与企业文化
HR 将在未来的 AI 时代中扮演 “战略引导者 + 管理变革催化者” 的核心角色。
行动建议与未来展望
企业若想在 AI 转型中取得成功,应当:
✅ 采用“变革敏捷”思维,持续学习、实时迭代
✅ 建立 AI 驱动的员工体验平台,支持流程与文化融合
✅ 打破 HR、IT、业务之间的壁垒,实现跨部门协同
✅ 实施实时度量机制,根据反馈不断优化 AI 战略
EXP 已成为企业迈入 AI 未来的基础设施。
AI 将持续重塑职场,但决定 AI 成败的关键并非技术本身,而是组织是否能让员工真正拥抱 AI、用好 AI。
EXP 不再只是一个 HR 工具,而是打造学习型组织、推动信任建设和灵活变革的“中枢神经系统”。企业若想在 AI 驱动的时代中保持竞争力,就必须把员工体验放在战略核心位置。
作者:Kathi Enderes | 全球研究与行业分析高级副总裁 | Josh Bersin Company
AI Transformation
2025年07月19日
AI Transformation
How To Make Productivity Soar: Four Stages of AI TransformationWe’ve been doing a lot of advisory work on skills and job design and now that AI tools have arrived, we’re reinventing work faster than ever. So let me give you some thoughts on this process, and you can also learn more from my recent podcast.
As you know, there are many types of AI business tools: Copilots, Assistants, Agents, Talent Intelligence Systems, and embedded applications. Each of these products are built on an AI-first foundation and they layer on domain expertise, use-case analysis, and iterative design to build smarter and smarter systems.
Self-driving cars started as voice assistants, automatic braking, and lane warnings. Now they keep you in the lane and slow your car when the speed limit changes. And soon enough they’ll be driving for us, so we can sit in the back seat and read a book.
Our HR Assistant Galileo started as a research and problem solving tool, and it’s rapidly becoming an AI coach, benchmarking tool, recruiting, and change management system. So all these tools go from simple use-cases to deeper applications and autonomy over time.
As the tools get smarter and more domain focused we are going to have to rethink our jobs and business processes. And unlike ERP, where we essentially trained people to “adopt” the system, now a lot of the groundbreaking applications come from the bottom up. Individuals will discover capabilities for AI and then apply them in increasingly innovative ways.
And over time, as they get smarter, our jobs move more to “supervisors” and “trainers” of AI, not just consumers. For example if our self-driving car took a bumpy route, we may “retrain it” to take a longer but smoother road.
As I discuss in the podcast, I believe there are four stages of adoption today. And we’re in the middle of doing all four at the same time.
Level 1: Make existing work easier. (Same job, better tools.)
This is where we click on the Microsoft Copilot or Zoom or Teams and the system analyzes a meeting, summarizes emails, or writes a document with our help. We do our jobs the same way we did before, but we now have a “super-productivity” tool to make it easier. These “add-on” use cases are emerging everywhere, and they already feel like a commodity.
In most cases employees see 10-15% or more improvements here, but life isn’t that much different. And sometimes the tool slows us down (Copilot doesn’t create slides well at all yet) and may actually get in the way. But we can expect this mode to continue and most of us figure this out on our own.
Level 2: Major steps eliminated, but the job is the same. (Same job, tools eliminate work.)
At level 2 we automated a lot. Software engineers now use copilots to develop 70% of their code, so they’re spending more time testing and prompting the AI. Their individual coding skills may atrophy, but they can now work on more architectural issues.
The “job” of software engineer may still be the same, but the output is far greater. So we’re making the same pay, doing the same work, but using highly automated tools.
This includes scenarios like chip designers, software engineers, supermarket checkout clerks, nurse scheduling jobs, and even recruiting assistants. Paradox customers, for example, virtually eliminate “scheduling assistants” for recruiting.
At this level companies can see 50-75% productivity improvement, and free time to focus on quality management, customer service, and ongoing improvements to the tools.
Level 3: Re-engineered work, partnered with agents. (New job, redesigned process, agents automate work.)
At level 3 we go further: we re-engineer the process and the work. Imagine how McDonald’s replaced its counter workers with a kiosk, eliminating the “may I take you order please?” role.
This took some major design effort but resulted in a whole new set of roles, workflow, and management structure in the restaurants. The “cost per burger” went down, and the customer experience is almost as good (not quite).
Here we need to be careful because sometimes the “self-service, AI-enabled” experience doesn’t work. A good example is the supermarket self-checkout. It rarely works well and usually takes longer than standing in line. But it will get better, and the resulting experience is faster throughput, more data (the self-service agent might offer you a discount since it knows your buying history), and far superior employee roles.
In level 3 the employees are still involved, and we are more or less “working with the machine,” aiding and supporting the process.
Level 4: Autonomous intelligent agents, people training and managing the AI. (New job, redesigned process, people “manage” the agents.)
At level 4 we go even further. Imagine an AI recruiter (Paradox does this) that could email a hiring manager and his team, gain feedback and requirements on a job and role, consolidate input, and create a total description. This Agent could then review this job against the company culture and pay policies, compare the job against similar jobs in the external market, and tweak the level, job title, and description to be competitive. And then it could start sourcing, and give the hiring manager and human recruiter a set of candidates ranked by various criteria.
That process, which takes dozens of steps for a recruiter, could be fully automated and vastly improved. The Agent could even look at prior hires and get even smarter about who to source based on the success of other candidates.
Now the human job is to “train” and “monitor” and “manage” this AI Agent, who has effectively become a digital employee. (Note: Salesforce is doing a terrific job of building this out for sales and service.)
The Rise of the SuperWorker
Our thesis is that AI is not a “job-replacement” technology, it’s a “SuperWorker empowerment” technology. In other words, most of these scenarios result in higher value jobs, higher pay, and value creation (not cost reduction) in the business.
This is happening fast.
We’re in the middle of a big study in this area and I’ll be explaining this more in our upcoming 2025 Predictions report. The upside of all this will be new and higher paying jobs, faster response to business change, but a lot of IT, design, and data management to do. But based on our research, this is coming soon.
AI Transformation
2024年12月01日
AI Transformation
2024年的HRTech:GenAI、分析和技能技术In 2024, the field of Human Resources is experiencing a transformative shift with the integration of cutting-edge technologies such as Generative AI (GenAI), advanced analytics, and skills technology. This article by Dave Zielinski, featured on SHRM Online, delves into the evolving landscape of HR, highlighting the significant impact of these technologies on enhancing the employee experience, improving regulatory compliance, and revolutionizing talent management. Industry analysts and thought leaders share insights on the growing importance of GenAI in HR processes, the challenges of maintaining employee experience in cost-cutting scenarios, and the potential of predictive analytics in optimizing workforce planning.
接受SHRM Online采访的人力资源行业分析师、从业者和思想领袖表示,今年,人力资源职能部门将采用生成式人工智能 (GenAI),投资于提升员工体验的技术,并采用强大的预测分析和技能技术。
人力资源领导者将转向技术,这些技术不仅可以提高法规遵从性,还可以帮助其组织做出更好、更快的人才决策并重新定义工作方式。
有远见的公司将继续投资 EX
一些分析师预测,随着高管将注意力转向降低成本和提高效率,远离包容性、公平和多样性等问题,员工体验 (EX) 将在 2024 年出现“衰退”;灵活的工作安排;和员工心理健康。员工的工作选择将减少,雇主将收回一些影响力。
不过,尽管许多组织可能会在 2024 年减少或冻结 EX 支出,但专家对此类举措的后果提出警告。
JP Gownder 是 Forrester 的副总裁兼首席分析师。他在博文中写道,根据 Forrester 研究,66% 的技术决策者表示,他们将在 2024 年增加对 EX 或人力资源技术的投资,其中许多投资将旨在提高效率,而不是 EX 结果。
但逆流而上的领导者将在 2024 年获得实实在在的好处。
“通过开发成熟的 EX 计划,您的组织可以提高生产力、降低人员流失率并提高创造力,”Gownder 写道。
其他专家认为,足智多谋的人力资源领导者会在预算紧张的情况下找到投资 EX 的方法。
管理咨询公司光辉国际 (Korn Ferry) 首席人力资源官 (CHRO) 业务的高级客户合伙人丹·卡普兰 (Dan Kaplan) 表示:“人力资源部门将被迫在低迷的市场中保持参与度,甚至在成本削减和削减的整个过程中也不例外。” “这将是一场艰难的舞蹈,但最好的人力资源领导者会找到办法做到这一点。”
光辉国际 (Korn Ferry) 专门负责人力资源问题的高级客户合伙人胡安·巴勃罗·冈萨雷斯 (Juan Pablo Gonzalez) 表示,组织对 EX 的承诺在 2024 年不会减弱,但 EX 看起来会非常不同。
“EX 的本质可能会变得更加个性化,同时也会变得不那么个性化,”冈萨雷斯说。“例如,通过使用 Microsoft Office Copilot、Workday 和 Salesforce 等大型软件平台中已有的人工智能功能,雇主和员工已经改变了他们的 EX。正在发生的情况是,员工与技术的互动越来越多地取代了与人的互动,但与技术的互动已经变得更加适合员工的特定需求和情况。”
亚特兰大人力资源咨询公司 IA 的创始人兼管理负责人 Mark Stelzner 表示,虽然由于组织面临控制盈利的挑战,预算将在 2024 年重新分配,但良好的 EX 相关技术投资将继续为公司带来红利。
“我认为投资 EX 实际上会提高效率并降低成本,”Stelzner 说。“到 2024 年,我们可能会看到组织不断转向‘流程主导、技术支持’的理念。端到端流程的优化通常会导致诸如消除现有技术债务以及统一工具和技术等决策,以减少员工的困惑并优化个性化,从而减少集成良好的接触点。”
Gartner 专门研究人力资源技术的副总裁分析师 John Kostoulas 表示,做出更具战略性的采购决策和改善现有技术生态系统的治理是改善 EX 的两个关键。Gartner 最近的研究发现,60% 的人力资源领导者认为他们当前的技术阻碍而不是改善了员工体验。
Nucleus Research 专门负责员工体验的研究经理 Evelyn McMullen 表示,仅仅为了提高效率而不是 EX 结果而设计的技术投资可能被证明是短视的。她指出,改进的 EX 通常会带来更好的绩效并降低与营业额相关的成本。
麦克马伦说:“考虑到劳动力市场和求职者优势的不断波动,减少 EX 预算的风险尤其大。” “当控制权不可避免地回到求职者手中时,保留 EX 投资的组织将能够更好地捕获和留住最优秀的人才。”
GenAI 从实验转向加速采用
到 2024 年,通过更多地采用该技术,人力资源职能将从涉足 GenAI 转向更深的领域。
随着领导者制定更严格的 GenAI 治理计划以及使用该技术的风险开始降低,人力资源和招聘部门将越来越多地使用其 HRIS 平台中已有的 GenAI 工具来编写职位描述和面试指南、创建敬业度调查、开发培训课程、分析数据,并制定政策。
世界大型企业联合会 2023 年底对首席人力资源官的调查发现,61% 的首席人力资源官计划在 2024 年投资人工智能以简化人力资源流程。
分析师 Eser Rizaoglu 表示:“许多人力资源领导者的 GenAI 之旅仍处于起步阶段,但要么通过现有的人力资源技术提供商获得 GenAI 功能,要么到 2024 年中期购买新的 GenAI 工具。” Gartner 的人力资源研究和咨询实践。
Rizaoglu 表示,许多人力资源技术供应商仍在努力弄清楚如何充分利用 GenAI 的功能,同时平衡保护数据、确保有效治理和考虑道德因素的需求。他表示:“在实现这种精细的平衡之前,GenAI 能力在人力资源领域的大规模扩散将面临挑战。”
Stelzner 表示,虽然去年 GenAI 带来了兴奋并刺激了人力资源领域的实验,但“冷酷的现实”是许多组织仍然没有准备好全力投入。
“到 2024 年,GenAI 采用率的任何增长都可能是渐进式的,包括更好地利用聊天机器人、增强员工沟通的个性化、更加关注人才招聘领域的可能性以及系统升级和实施测试的自动化。”他说。
埃森哲进行的研究发现,GenAI 有潜力改变组织 40% 的工作时间。“这并不意味着 40% 的工作岗位将会消失,而是反映了工作方式的转变,”负责该公司人力资源转型和交付实践的埃森哲董事总经理迈克尔·本亚明 (Michael Benyamin) 表示。“技术将取代一些任务,让员工在工作中变得更有生产力、更具创造力和效率。人工智能是人类能力的倍增器。”
随着 GenAI 开始增强或转变更多的工作角色,人力资源和学习领导者将需要创建敏捷的学习计划,以重新培训员工使用快速发展的 GenAI 工具的技能。许多工人几乎没有接受过如何使用该技术的培训。
Salesforce 于 2023 年进行的一项调查发现,62% 的员工表示他们缺乏有效、安全使用 GenAI 的技能。波士顿咨询集团的另一项研究发现,尽管该技术有望从根本上重塑他们的工作方式,但只有 14% 的一线员工接受过与人工智能相关的技能提升。
Benyamin 表示,随着 GenAI 在工作场所变得越来越普遍,人力资源部门必须帮助制定负责任和道德的人工智能使用政策,并制定培训计划来解决偏见、歧视、数据保护和适当数据使用等问题。
更加关注变革管理,提高新人力资源软件的采用率
专家认为,许多人力资源领导者将寻求通过采用变革管理策略来提高 2024 年技术投资的回报,例如确保员工使用新采用的技术解决方案。
人力资源面临的一项持续挑战是管理云技术供应商源源不断的更新和新功能,导致许多人力资源软件即服务 (SaaS) 许可证闲置。位于加利福尼亚州帕洛阿尔托的 SaaS 智能平台 Productiv 于 2023 年进行的一项研究发现,组织中 53% 的 SaaS 许可证总体未使用。
位于阿拉巴马州亨茨维尔的人力资源咨询和研究公司 Lighthouse Research 的首席研究官本·尤班克斯 (Ben Eubanks) 表示,许多组织低估了如何确保员工在新的人力资源平台和应用程序推出后定期使用它们。
“人力资源和人才技术不是‘按下开关就可以开始’类型的解决方案,”尤班克斯说。“但许多雇主仍然这么认为,并低估了采用该技术所需的行为改变。”
重新思考员工敬业度调查
更多的人力资源和执行团队将重新考虑如何创建敬业度调查以及分发调查的频率,以减少“调查疲劳”。
ServiceNow 高级副总裁兼员工工作流程产品总经理 Gretchen Alarcon 表示,随着组织继续努力寻找“秘方”,让员工在 2024 年更频繁地重返办公室,人力资源领导者将需要使用更有意义的方法测量工具。
她说:“组织将利用员工的声音调查和反馈来分析在办公室花费的时间与员工情绪和生产力的关系。” “这将使领导者能够根据数据而不是假设做出决策,这样他们就可以根据员工的需求、行为和提高生产力的因素来调整重返办公室 [RTO] 策略。”
从改进的技能技术中获益
转向基于技能的招聘和晋升策略的人力资源和招聘领导者将受益于技术的发展,例如使用人工智能和机器学习自动创建、组织和更新员工技能数据库的技能本体,从而显着减少体力工作量人力资源部要求。
下一代本体论和其他新兴技能技术可以使人力资源领导者更轻松地识别组织中的技能差距,然后相应地调整招聘或学习和发展计划。虽然市场上没有真正的端到端技能技术解决方案,但许多人力资源领导者正在将人工智能驱动的点解决方案结合在一起,以创建有效的技能数据库和评估工具。
“到 2024 年,随着组织采用技能智能技术,他们将开始认识到,这不是拥有最大的技能数据库,而是一个不断更新的丰富且互联的技能数据库,”Alarcon 说。她补充说,此类数据库使公司能够了解人才缺口是否是由于缺乏合适的人才或缺乏技能造成的,以及他们是否需要为未来培养、购买或借用人才。
预测分析工具变得更加强大
人力资源从业者和分析师认为,人力资源部门将受益于日益强大的预测分析工具,这些工具将改善劳动力规划和数据驱动的决策。
光辉国际 (Korn Ferry) 的冈萨雷斯 (Gonzalez) 表示:“凭借更大的数据集和改进的算法,人力资源部门应该能够采取一些措施,例如缓和过去几年的招聘盛衰周期。” 例如,冈萨雷斯表示,雇主不会雇佣数千名员工,然后在六个月后解雇其中一半,而是能够更好地预测在合理的时间内他们需要的员工数量和类型。他说:“然后他们可以雇用和培养一支更稳定的员工队伍,以造福所有组织利益相关者。”
Stelzner 认为,许多人力资源部门由于没有充分发挥数据分析的潜力而错失了机会。他说,如果未能投资分析人力资源数据所需的工具和技能,可能会导致洞察力缺失,并阻碍人力资源战略与更广泛的业务目标保持一致的能力。
“从历史上看,人力资源部门也一直在努力解决数据的准确性问题,”斯特尔兹纳说。“这会影响该职能部门依靠报告和数据分析来通知和支持其决策的能力。更糟糕的是,企业的其他部门已经接受过培训,预计人力资源系统会提供有问题的数据,因此在数据清理、报告和分析方面还有很多工作要做,以重新获得整个企业的可信度。”
Dave Zielinski 是 Skiwood Communications 的负责人,这是一家位于明尼阿波利斯的商业写作和编辑公司。
作者:Dave Zielinski